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The free-electron laser of a rectangular guide loaded with two slabs of dielectric is studied by fluid
theory. The main mode of super-radiation in this system is identified. This mode has all the characteris-
tics of slow-wave free-electron lasers. Because there is no current density in this mode perpendicular to
the plane of the dielectric, the electron beam can propagate near the slabs, and the growth rate may be

very large.

PACS number(s): 41.60.Cr, 41.75.Ht
I. INTRODUCTION

Coherent radiation of short wavelength has long been a
major object of study in the field of the free-electron laser
(FEL). The disadvantages of the short-wavelength radia-
tion of a common FEL are its high energy beam require-
ment and low gain [1]; the Cerenkov FEL not only has
low efficiency, but also requires the thickness of the
dielectric d ~A [2]. The slow-wave FEL not only has the
feature of using lower beam energy to produce high gain,
high efficiency, and short-wavelength coherent radiation
[3,4], but it also requires no specific condition. This pa-
per uses fluid theory to derive the dispersion equation
and the gain of a slow-wave FEL of a rectangular guide
loaded with two slabs of dielectric. The results are that
the main mode of super-radiation in this system is the
LSE mode, which has all the characteristics of slow-wave
FEL’s. The LSE mode is a transverse electric mode to
the y direction, the direction perpendicular to the dielec-
tric slabs. Because there is no current density J,, the
electron beam can translate near the slab, and the growth
rate may be very large.

II. EIGENMODE AND DISPERSION EQUATION

Consider a metallic rectangular waveguide loaded with
two slabs of dielectric (cf. Fig. 1) having a vacuum region
in t <y <b —t and two slabs of dielectric of permittivity
€ in regions 0<y <t and b—t <y <t. Generally, the
eigenmodes of this system are the LSE mode and LSM
mode [4,5]. The LSM mode is a transverse magnetic
mode to the y direction. For the LSE mode, the scalar
potential equation is written by

V29 +k2$=0, (1)
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FIG. 1. Schematic of the waveguide. See text for explana-

tion.
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where k2=w2,ue, k is the wave number of the microwave,

o is the frequency, and ¢=d(x,p)e —Jk‘z; the fields are
given by
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Solving (1) by using the boundary conditions and con-
tinuity conditions of the fields at y =t and y =b —t, we
obtain

A cos—nz—ﬂx sink;y, 0<y=<t¢

—ky(b—y)

¢= Bsini"a—”x(e"‘”+e ), t<y<b—t (3

A cos%x sink (b —y), b—t=<y<=t,

where k,k, are the eigenvalues of y direction in vacuum
and dielectric, respectively, and they satisfy the eigen-
equations
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where m =1,2,3,..., and

2 —2k,t —2k,(b—1)
..__A2 =£2_ e T—e (5)
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So, the fields of the LSE mode in vacuum can be written
by
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where k,, is the wave number of the wiggler. An electron xsin™T (e kyy |, ~halb y))e Jkjz'—a't)
beam of the density a
_ a b where  wo=vok,vo,  ko=—Yoku, Ro=No/Yo
no(x,9)=noAxoAped |x == 18 |y == ’ ®)  kr=yolk,—vow/c?), k2 =w?/c?, and ¢, is the pondero-

motive potential,
is injected in the waveguide with a speed of vye,. Using

the same method used by Tripathi and Liu in Ref. [3], we ., .v%’B.BB, %0, L0
obtain the nonlinear current density and particle density, ¢, =JW —k,+ —w_(k 3 tkg)
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In the conditions of strong pump and high gain, the
where y,=(1—v3/c2)7!/2, the prime denotes Lorentz- effects of the linear current can be neglected. Using Eq.
transformed quantities in the moving frame, (9)in the wave equations of the radiation field, we obtain
J
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Fort<y=<b—t,e,=1;for 05y <t,t <y <b—t, £,=¢, and the right hand side of (12) is zero. Substituting the eigen-
mode H, of Eq. (6) into (12), multiplying (12) by H,*, and integrating over x from O to a, and y from O to b, we obtain
the dispersion equation
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where,
p= 28x0Ayow5 5k, (1—Bo/7) o ket
clyokso’(1—Bym)
2
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mir

X |3k2—8

and w?, =4we’ny/m, 0, =eB,, /mc, and n=ck, /0. The
left hand side of (13) is the eigen-dispersion equation of
the LSE mode, and is nearly zero to the zeroth order;
[@=(k,+k,)vo]>*=0 is the linear dispersion relation of
the ponderomotive potential wave. Equation (13) is the
coupling dispersion equation of the LSE mode and the
ponderomotive potential wave.

In order to obtain the coupling growth rate and the
frequency shift, expanding the left hand side of (14) at the
LSE eigenmode w =, we obtain

2P¢
(w—w)[o—(k,+k,)vy]*=
' o 20, dk?
aa 2w
2
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where we have used the condition of the slow variation of
k? with respect to », and
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Solving (16) around the simultaneous zeros of the left
hand side, ie., w—w,+8w—(k,+k,)vy+8w, where
|8w| << @y, is the complex frequency shift, we obtain

Pc?

. (17)
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The growth mode is

1/3
Pc? 1, V3
b aaw, 2 2 (18)
and the growth rate is
- 173
Vv 2
I‘=Im(5w)=-~i i (19)
2 | aaw,
The frequency shift is
, 1173
Re(80)=—~ | L& 20)
2 | aaw,
and the efficiency is
, 173
n=v} |2, @1
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II1. DISCUSSION AND CONCLUSIONS

(i) This system is the slow-wave FEL; it has all the
characteristics of slow-wave FEL’s [3,4].

(ii) Because the nonlinear current density has only two
components, J,, and J, (no J,), the eigenmode of this sys-
tem is the LSE mode. Due to the absence of J,, the elec-
tron beam can propagate near the dielectric slabs, the in-
teraction between the electron beam and microwave field
may be very strong, and this will result in some potential
benefits such as enhanced radiation growth rate,
efficiency, and output power.

(iii) It can be seen from Eq. (18), that a higher growth
rate may be obtained by choosing a small value a. This
differs from the result of Ref. [6] where a is very large,
making the cos(m7x /a) and sin(mmx /a) of Eq. (3) con-
stant. From Egs. (3) or (6) we can see that the larger the
value of a, the smaller the eigenmode field and the in-
teraction between the beam and the field, so the growth
rate may be very small. From Eq. (19), we can also see
that choosing proper parameters such as ¢, b, €, B, and
k,, may also obtain a higher growth rate.
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